Блокинг генератор. Схема, устройство.

Схема и устройство блокинг генератора (10+)

Блокинг генератор - Схема, устройство

Оглавление :: ПоискТехника безопасности :: Помощь

Схема, устройство блокинг генератора.

Блокинг генератор. Схема. Принцип действия. Применение

Транзистор VT1 - выбор транзистора зависит от применения блокинг генератора. Решающими факторами являются максимально допустимое напряжение коллектор-эмиттер, максимальный ток коллектора и максимальная рассеиваемая мощность.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Резистор R1 - Резистор смещения. Его подбирают так, чтобы возникало самовозбуждение устройства. Его значения зависят от коэффициента передачи тока транзистора, параметров трансформатора и нагрузки. Я обычно начинаю подбор со 100 кОм, постепенно уменьшаю его сопротивление. Кроме того, сопротивление этого резистора влияет на время между импульсами. Его уменьшение ведет к уменьшению паузы между импульсами.

Резистор R2, Конденсатор C1 - Эти радиодетали вместе с резистором R1 определяют частоту работы генератора. Кроме того, R2 должен быть таким, чтобы транзистор работал в режиме насыщения. Выбираю [Сопротивление R2] = 2 * [Напряжение на обмотке 1 при напряжении на обмотке 2, равном питанию] * [Коэффициент передачи тока транзистора VT1] / [Максимально возможный ток через транзистор VT1]. Емкость конденсатора C1 влияет на длительность импульса и длительность паузы. Увеличение емкости приводит к увеличению длительностей импульса и паузы.

Обмотка 1 трансформатора - выбираем [число витков обмотки 1] = 10 * [число витков обмотки 2] / [напряжение питания]. В этом случае в цепь обратной связи будет подаваться напряжение 10 вольт, что подходит для нормальной работы схемы.

Обмотка 2 трансформатора - число витков подбирается так, чтобы за время нахождения транзистора в открытом состоянии трансформатор не входил в состояние насыщения.

В приведенной схеме трансформатор используется с зазором. Если генератор совсем маломощный, сердечник у трансформатора ферритовый, токи и напряжения малы, а число витков большое, то иногда можно использовать трансформатор без зазора. Если же сердечник из железа, или имеют место достаточно большие токи подмагничивания, то зазор делать обязательно. Я всегда делаю зазор. Работа генератора предполагает размагничивание сердечника в моменты, когда трансформатор отключен от источника питания, но при отсутствии зазора магнитный гистерезис сердечника может быть столь велик, что размагничивание не будет происходить, сердечник окончательно намагнитится и войдет в насыщение.

Подробно останавливаться на расчете трансформатора не буду, но скажу, что зазор можно использовать совсем небольшой. 0.2 мм вполне подойдет.

Для целей размагничивания используется также обмотка 3. Обмотка 2 представляет собой некоторую катушку индуктивности. В результате приложения к ней на некоторое время напряжения, по ней начинает протекать ток, и накапливается энергия. Когда транзистор закрывается, этот ток не может прекратиться моментально. Необходимо куда-то деть накопленную энергию, иначе бросок напряжения выведет из строя транзистор. Можно, конечно, поглотить эту энергию, например, резистором в цепи базы, но это плохо скажется на КПД. Обмотка 3 подключена так, чтобы в ситуации, когда обмотка 2 запитана от источника (транзистор открыт), обмотка 3 была отключена от источника питания. Когда транзистор закрывается, на обмотке 2 возникает напряжение противоположной полярности. Тогда через обмотку 3 начинает идти ток, который возвращает энергию, накопленную в магнитном поле сердечника в цепи питания.

Обмотка 3 может не применяться, если есть уверенность, что нагрузка, подключенная к выходу, поглотит всю энергию индуктивного броска, например, в схемах обратноходового преобразователя напряжения.

Обмотка 3 трансформатора - число витков определяется максимально возможным отношением длительности открытого состояния транзистора к длительности закрытого. [Число витков обмотки 3] = 0.9 * [Число витков обмотки 2] * [Длительность закрытого состояния] / [Длительность открытого состояния]. Коэффициент 0.9 применяется для запаса, чтобы наверняка обеспечить размагничивание сердечника.

[Максимальное напряжение на транзисторе VT1] = [Напряжение питания] * (1 + [Число витков обмотки 2] / [Число витков обмотки 3]) + [Выброс напряжения, обусловленный индуктивностью связи этих обмоток]. Подробнее от индуктивности связи, утечки.

Диод VD1 - защищает переход база - эмиттер транзистора от высокого напряжения обратной полярности. Имеет смысл применять диод, рассчитанный на ток, равный отношению напряжения на обмотке 1 к сопротивлению резистора R2.

Диод VD2 - Участвует в отводе тока размагничивания. Рассчитывая трансформатор, Вы вычислите ток намагничивания. Диод должен быть рассчитан на ток, равный току намагничивания, поделить на число витков в обмотке 3, умножить на число витков в обмотке 2. [Максимальное напряжение на диоде VD2] = [Напряжение питания] * (1 + [Число витков обмотки 3] / [Число витков обмотки 2])

(читать дальше...) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. [1] сообщений.

Вы сказал, что С1 разряжается через R2, R1 и обмотку. Но R1 не связан гальванически с цепью базы. Может быть разрядный ток протекает через VD1? Читать ответ...

Еще статьи

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо...
Схема импульсного блока питания. Расчет на разные напряжения и токи....

Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем...
Типичные схемы с полевыми транзисторами. Применение МОП....

Генератор синуса, синусоидальных колебаний, сигнала, напряжения. Схема...
Схема генератора синусоидального сигнала....

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука...
Включение светодиодов в светодиодном фонаре....

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить...
Приемы намотки импульсного дросселя / трансформатора....

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму...
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи....

Релаксационный генератор пилообразного напряжения, сигнала, пилы. Схем...
Схемы и расчет релаксационных генераторов, формирующих пилообразное напряжение...

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. ...
Схема преобразователя однофазного напряжения в трехфазное....