Стабилизатор тока. Источник, генератор. Стабилизировать. Схема, конструкция, устройство, проектирование, расчет. Рассчитать. Стабильный. Принцип действия.

Устройство и принцип действия источника стабильного тока. (10+)

Источник тока. Принцип действия. Расчет

Оглавление :: ПоискТехника безопасности :: Помощь

Источники стабильного тока применяются, когда нужно обеспечить заданный ток вне зависимости от напряжения и сопротивления нагрузки. Источник (генератор) тока обладает большим дифференциальным сопротивлением. Это означает, что сила тока через генератор тока в рабочем режиме мало зависит от напряжения на нем. В идеале дифференциальное сопротивление источника тока должно быть равно бесконечности, то есть ток не должен зависеть от напряжения. Реальные источники тока обладают дифференциальным сопротивлением от 1 МОм.

Обозначение источника (стабилизатора, генератора) тока на схемах

Стабилизатор тока. Источник, генератор. Обозначение

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Типичные реализации источника, генератора тока

Стабилизатор тока. Источник, генератор. Стабилизировать. Схема, конструкция, устройство, проектирование, расчет. Рассчитать. Стабильный. Принцип действия.

Приведенные схемы обладают рядом серьезных недостатков. Схема A1 на полевом транзисторе - одна из худших реализаций. Рассчитать ее параметры невозможно, так как они зависят от индивидуальных особенностей экземпляра полевого транзистора. Нужный ток устанавливается подбором резистора. Схема может функционировать, когда сопротивление резистора равно 0. Дифференциальное сопротивление (а значит стабильность тока) схемы невысоко, нередко оно бывает меньше 200 кОм. На работу этого варианта сильно влияет температура полевого транзистора. Преимущество одно - это действительно двухполюсник. Он не требует подвода дополнительного питания. Это бывает очень важно в некоторых схемах.

Схема A2 обладает гораздо лучшими характеристиками. В случае применения транзисторов с большим коэффициентом передачи тока, схема может иметь дифференциальное сопротивление выше 1 МОм (10 МОм, или даже больше). Но вывода у схемы не два, а три. Так что она может быть включена только в некоторые электронные схемы, в которых один вывод источника тока подключен к шине питания или общему проводу, и есть возможность подвести к одному из выводов общий провод или питание соответственно. На рисунке приведена схема с подключением к шине питания. Схема с подключением к общему проводу выглядит совершенно аналогично с той разницей, что ее надо перевернуть и поменять проводимость транзистора и полярность стабилитрона.

Обратите внимание, что в схеме в качестве источника опорного напряжения используется стабилитрон. Для стабилитронов характерна зависимость напряжения стабилизации от температуры. Помните об этом при проектировании источников тока. Стабилитрон может быть источником шумов. Чтобы уменьшить их влияние на работу устройства параллельно стабилитрону можно подключить керамический конденсатор емкость 0.1 мкФ.

Расчет транзисторного источника тока

Принцип действия приведенной схемы основан на том, что напряжение на резисторе R1 поддерживается равным напряжению на стабилитроне минус напряжение насыщения эмиттерного перехода транзистора. Напряжение на резисторе пропорционально току нагрузки. Так что этот ток также поддерживается на заданном уровне. Если ток нагрузки падает, то напряжение на резисторе также падает. Ток базы транзистора растет, что приводит к открытию транзистора и росту тока. Если ток нагрузки растет, то транзистор наоборот закрывается.

Ориентировочный расчет транзисторного источника тока можно выполнить так. Выбираем стабилитрон. Вычисляем напряжение на резисторе R1.

[Напряжение на резисторе R1, В] = [Напряжение стабилизации стабилитрона, В] - [Напряжение насыщения эмиттерного перехода транзистора, В]

Исходя из необходимой силы тока, определяем сопротивление резистора R1.

[Сопротивление резистора R1, Ом] = [Напряжение на резисторе R1, В] / [Необходимая сила тока источника, А]

[Сопротивление резистора R2, Ом] = 0.8 * ([Напряжение питания, В] - [Напряжение стабилизации стабилитрона, В]) * [Коэффициент передачи тока транзистора] / [Необходимая сила тока источника, А]

[Максимально возможное напряжение на нагрузке, В] = [Напряжение питания, В] - [Напряжение на резисторе R1, В] - [Напряжение насыщения коллектор - эмиттер транзистора, В]

[Мощность транзистора, Вт] = ([Напряжение питания, В] - [Напряжение на резисторе R1, В]) * [Необходимая сила тока источника, А]

[Мощность стабилитрона, Вт] = 0.25 * [Необходимая сила тока источника, А] * [Напряжение стабилизации стабилитрона, В] / [Коэффициент передачи тока транзистора]

[Мощность резистора R1, Вт] = [Напряжение на резисторе R1, В] * [Необходимая сила тока источника, А]

[Мощность резистора R2, Вт] = ([Напряжение питания, В] - [Напряжение стабилизации стабилитрона, В]) ^ 2 / [Сопротивление резистора R2, Ом]


Напряжение питания, В
Напряжение стабилизации стабилитрона, В
Необходимая сила тока источника, А
Напряжение насыщения база - эмиттер транзистора, В
Напряжение насыщения коллектор - эмиттер транзистора, В
Коэффициент передачи тока транзистора
Напряжение на резисторе R1, В
3.9
Сопротивление резистора R1, Ом
39
Сопротивление резистора R2, Ом
3360
Максимальное напряжение на нагрузке, В
10.9
Мощность транзистора, Вт
1.11
Мощность стабилитрона, Вт
0.0028125
Мощность резистора R1, Вт
0.39
Мощность резистора R2, Вт
0.0328125
 
Совет! Сохраните адрес этой страницы в избранном. Возможно, Вам понадобится повторить расчет.

(читать дальше...) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи

Применение полевых транзисторов, МОП, FET, MOSFET. Использование. Схем...
Типичные схемы с полевыми транзисторами. Применение МОП....

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо...
Схема импульсного блока питания. Расчет на разные напряжения и токи....

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука...
Включение светодиодов в светодиодном фонаре....

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение...
Составной транзистор - схемы, применение, расчет параметров. Схемы Дарлингтона, ...

Токовое управление. Транзисторная схемотехника, схема. Ток. Электроник...
Усилитель ВЧ. Пример схемы специально для биполярного транзистора. Схемотехничес...

Простой импульсный прямоходовый преобразователь напряжения. 5 - 12 вол...
Схема простого преобразователя напряжения для питания операционного усилителя....

Импульсный источник питания светодиода светодиодного фонаря, светильни...
Схема импульсного источника питания ярких светодиодов....

Преобразователь однофазного напряжения в трехфазное. Принцип действия,...
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех...