Дроссель, катушка индуктивности. Принцип работы. Математическая модель. Типы, виды, категории, классификация.

Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение. Свойства. Классификация. (10+)

Дроссель, катушка индуктивности - Принцип работы. Математическая модель. Типы, виды, категории, классификация

Оглавление :: ПоискТехника безопасности :: Помощь

Катушка индуктивности способна накапливать энергию в своем магнитном поле. Это проявляется в том, что при приложении к ней напряжения в ней постепенно нарастает ток, а при смене полярности - постепенно убывает. Резко изменить силу тока в катушке индуктивности (дросселе) невозможно. Она будет сопротивляться этому путем формирования напряжения самоиндукции на своих выводах. Это напряжение может быть очень большим и обеспечит прохождение тока путем пробоя изоляции.

Работа дросселя проявляется во времени. Без рассмотрения изменения силы тока во времени понимание работы катушки индуктивности невозможно.

Главной характеристикой дросселя является индуктивность. Индуктивность - коэффициент, определяющий зависимость скорости изменения электрического тока от напряжения на катушке.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Математическая модель катушки индуктивности. Обозначение.

Катушка индуктивности (дроссель) может иметь несколько выводов - отводов от частей обмотки и два вывода от начала и от конца обмотки. Работу катушки описывает следующее соотношение, которое и определяет ее применение в электронных схемах. [Сила тока через катушку в момент T] = [Сила тока через катушку в начальный момент T0] + интеграл от [T0] до [T] ([Напряжение на катушке] / [Индуктивность катушки]) по [Времени].

Более привычно эта формула выглядит так:

Индуктивность, дроссель. Формула напряжения, тока

В случае, если к катушке приложено постоянное напряжение, то формула приобретает более простой вид: [Сила тока через катушку индуктивности в момент T] = [Сила тока через катушку индуктивности в начальный момент T0] + [Напряжение на катушке] * ([T1] - [T0]) / [Индуктивность катушки]

Индуктивность измеряется в генри. Через дроссель индуктивностью 1 Гн за 1 с при напряжении 1 вольт пойдет ток 1 ампер. Обычно в схемах используются индуктивности от 1 микрогенри до 100 миллигенри.

Физически катушка индуктивности состоит из одного или нескольких витков провода, которые могут быть просто размещены в воздухе, а могут быть намотаны на сердечник из какого-либо материала. Сердечник намагничивается и, тем самым, накапливает в себе энергию.

Расчет индуктивности катушки в общем случае представляет серьезную сложность. С уверенностью можно утверждать только, что индуктивность пропорциональна квадрату числа витков. Это значит, что если Вы изготовили катушку индуктивности заданной геометрии с заданным сердечником с N витками провода и замерили ее индуктивность (пусть это будет L), то [Индуктивность катушки с N1 витками] = [L] * [N1]^2 / [N]^2

На идеальном дросселе тепловая энергия не выделяется, хотя через него может проходить ток. Дело в том, что сначала дроссель накапливает энергию, потом отдает ее в цепи питания, не рассеивая.

Катушка индуктивности, дроссель. Принцип работы. Математическая модель. Применение. Типы, виды, категории, классификация

На схемах катушка индуктивности обозначается, как показано на рисунке.

Идеальный дроссель

Идеальный дроссель имеет строго фиксированную индуктивность, соответствующую расчетной или надписи на корпусе, не зависящую от тока, напряжения и внешних условий, например, температуры. Он не имеет паразитной емкости и внутреннего сопротивления, потерь на перемагничивание.

Идеальный дроссель выдерживает любой ток, имеет нулевые размеры, не занимает место на плате. Он не шумит. Ток через него строго зависит от напряжения и времени, без посторонних помех.

Реальные дроссели. Классификация, виды, типы.

Если бы дроссели на самом деле были идеальными, то нужен был бы всего один тип дросселя - ПИД (просто идеальный дроссель). Его можно было бы применять во всех схемах. Но, как это часто бывает в жизни, идеала не существует. Для разных применений можно подобрать дроссели с определенными свойствами, пожертвовав другими, менее важными для данной схемы.

Главная проблема дросселя - омическое сопротивление провода, которым он намотан. Это сопротивление ухудшает параметры катушки индуктивности, приводит к нагреву, ограничивает максимальный ток. Снижение этого сопротивления требует снижения длины обмотки и увеличения толщины провода.

Снизить длину обмотки, сохранив требуемую индуктивность, можно, применив сердечник из ферромагнитного материала. Такой сердечник намагничивается, накапливает в себе энергию, значительно (иногда, в десятки тысяч раз) увеличивая индуктивность одного витка, а значит, сокращая число витков, необходимых для получения требуемой индуктивности. Наилучшим в этом смысле сердечником является мягкое трансформаторное железо.

Однако, применение сердечника, снижая омическое сопротивление катушки, порождает сразу ряд новых проблем. Во-первых, у сердечника есть определенный уровень магнитной индукции насыщения, выше которого сердечник уже не может намагнититься и не будет накапливать энергию. Дроссель (за исключением ряда специальных схем) должен применяться в условиях, исключающих насыщение. Во-вторых, под действием переменного электрического тока в сердечнике возникают потери, вызванные наведенными электрическими токами и нагревом от перемагничивания сердечника. Для борьбы с наведенными токами используются специальные технологии изготовления сердечника, исключающие большие контура в нем, по которым могут течь такие токи (например, слоеный сердечник с изоляцией между слоями или порошковое железо), или применение специальных материалов (ферритов), которые вообще не проводят электрический ток. Ферриты не проводят электрический ток, но с точки зрения своих магнитных свойств намного уступают железу. Поэтому их применяют в высокочастотных схемах (от 10 кГц), а для низкочастотных эффективнее применять трансформаторное железо.

Заказать партию дросселей с нужными параметрами не составляет труда, но в большинстве случаев подобрать дроссель промышленного производства для экспериментальной схемы не удается. Его приходится делать самостоятельно.

(читать дальше...) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. [9] сообщений.

Вот одна формула [число витков] = [1E6] * [индуктивность, Гн] * [максимально возможная сила тока, А] / [площадь сечения магнитопровода, кв. мм] / [максимальное значение индукции, Тл], по которой получается, что чем больше ток через дроссель, тем больше получается число витков -- что в корне противоречит теории -- чем нужен больший ток, тем должно быть меньше число витков (ЭТО Читать ответ...

А что такое E в первой формуле, прямо таки получается огромная величина индуктивности. В первой формуле правдоподобно, если индуктивность в микрогенри Если я правильно понял, то, например, E-3 означает 0.001? Читать ответ...

Как рассчитать и изготовить самому дроссель ВЧ, индуктивностью 5мкГн, на ток 3-4А ? Читать ответ...

Еще статьи

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле...
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома...

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука...
Включение светодиодов в светодиодном фонаре....

Пушпульный импульсный преобразователь напряжения, источник питания. Ко...
Как сконструировать пуш-пульный импульсный преобразователь. В каких ситуациях пр...

Катушка индуктивности. Изготовление. Намотка. Изготовить. Намотать. Мо...
Изготовление катушки индуктивности. Экранирование обмоток...

Микроконтроллеры. Основы. Базовые принципы. Освоить, изучить...
С чего начать самостоятельное изучение и освоение микро-контроллеров?...

Магнитный усилитель - проектирование, формулы, расчет онлайн (online)....
Расчет магнитного усилителя. Формулы для проектирования....

Практика проектирования электронных схем. Самоучитель электроники....
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы....

Прямоходовый импульсный преобразователь напряжения, источник питания. ...
Как выбрать частоту работы контроллера и скважность для однотактного прямоходово...