Магнитный усилитель - схема, принцип действия, особенности работы, устройство. Как устроен и работает.

Как устроен и работает магнитный усилитель. Схема. (10+)

Магнитный усилитель

Оглавление :: ПоискТехника безопасности :: Помощь

Магнитный усилитель позволяет управлять переменным током, проходящим через него, путем пропускания небольшого управляющего постоянного тока через управляющую обмотку.

Принцип действия магнитного усилителя

Вспомним формулу:

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

[Индуктивность, Гн] = 1.257E-9 * [Магнитная проницаемость сердечника] * [Площадь сечения магнитопровода, кв. мм] * [количество витков]^2 / [Длина средней магнитной линии сердечника, мм]

Принцип действия магнитного усилителя основан на интересном свойстве ферромагнитных материалов. Этим материалам свойственно насыщение. Это означает, что в ненамагниченном состоянии магнитная проницаемость может быть несколько тысяч или несколько десятков тысяч (для трансформаторного железа). При такой высокой магнитной проницаемости индуктивность катушки, намотанной на сердечнике, будет большой. Большим будет и модуль сопротивления переменному току. Путь переменному току будет практически перекрыт. Магнитный усилитель закрыт.

Но все меняется, если достаточно сильно (до насыщения) намагнитить сердечник. При этом его магнитная проницаемость приблизится к единице. Индуктивность, а значит модуль сопротивления, уменьшится в тысячи или десятки тысяч раз. Магнитный усилитель откроется.

Рисунок иллюстрирует описанный процесс. Магнитная индукция, характеризующая интенсивность магнитного поля, отложена по вертикальной оси. Сначала она быстро нарастает при небольшом росте электрического тока. Потом происходит перелом графика. Индукция уже растет намного медленнее по отношению к силе тока. Когда магнитный усилитель закрыт, сила тока располагается между точками 1 - 2. Сила тока через открытый магнитный усилитель находится между точками 3 - 4.

На этом рисунке мы видим график тока через магнитный усилитель в его разных режимах. A1 - усилитель открыт. A2 - усилитель закрыт. A3 - промежуточное состояние. Мы видим, что в открытом или закрытом состоянии магнитный усилитель практически не искажает сигнал. Но вот в промежуточном состоянии искажения очень существенные. Кроме того в промежуточном состоянии достаточно высоки потери на перемагничивание сердечника. В таком режиме магнитный усилитель используется только, если нагрузка не чувствительна к искажению формы сигнала или происходит последующая фильтрация. Замечу, что искажения, вносимые магнитным усилителем, довольно безобидные. В выходном сигнале нет высших гармоник.

Устройство, схема

Типичный магнитный усилитель состоит из двух совершенно одинаковых дросселей с двумя обмотками, соединенных, как показано на схеме.

Силовые обмотки L2 и L3 соединены параллельно. Выводы 1 - 2 предназначены для подвода переменного тока, которым мы хотим управлять. Они включаются последовательно с нагрузкой. Управляющие обмотки соединены последовательно навстречу друг другу, чтобы напряжение на одной равнялось минус напряжению на другой.

Очень важно, чтобы дроссели были максимально идентичными. Напряжение на обмотке L1, наводимое с обмотки L2, должно быть в точности равно напряжению на обмотке L4, наводимому с обмотки L3. Тогда на выводах 3 - 4 вообще не будет напряжения, что необходимо для правильной работы устройства.

Возможным вариантом является намотка обоих дросселей на одном Ш - образном сердечнике.

Здесь обмотка L1 подмагничивает оба дросселя. В обмотке L4 нет необходимости. Ниже мы рассчитаем количество витков для управляющих обмоток. Число витков обмотки L1 во втором исполнении равно числу витков обмотки L1 в первом исполнении. Может показаться, что второе исполнение экономит медь, ведь не нужно мотать вторую управляющую обмотку. Но на самом деле. Длина витка L1 во втором исполнении значительно больше, чем в первом. Экономия меди есть, но не очень большая.

(читать дальше...) :: (в начало статьи)

Оглавление :: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. [2] сообщений.

Здравствуйте. Измерение постоянного тока. Токовые клещи Вы пробовали делать или это теоретические разработки? Если делали можно рабочую схему с данными. Хотелось ее сделать. Читать ответ...

Поясните пожалуйста, как понимать элементы формул '1.257E-9', '2.5E5', '1.257E-3' и т.п. Благодарю. Читать ответ...

Еще статьи

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. ...
Схема преобразователя однофазного напряжения в трехфазное....

Тиристорное переключение нагрузки, коммутация (включение / выключение)...
Применение тиристоров в качестве реле (переключателей) напряжения переменного то...

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить...
Приемы намотки импульсного дросселя / трансформатора....

Резонансный инвертор, преобразователь напряжения повышающий. Схема, ко...
Инвертор 12/24 в 300. Резонансная схема....

Повышающий импульсный стабилизатор напряжения, источник питания. Преим...
Как работает повышающий стабилизированный преобразователь напряжения. Где он при...

Применение интегральных стабилизаторов напряжения (КРЕН). Типовые схем...
Как проектировать и рассчитывать источник питания на микросхеме интегрального ст...

Прямоходовый импульсный преобразователь напряжения. Выбор ключа - бипо...
Как сконструировать прямоходовый импульсный источник питания. Как выбрать мощные...

Микроконтроллеры. Основы. Базовые принципы. Освоить, изучить...
С чего начать самостоятельное изучение и освоение микро-контроллеров?...